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Abstract—With increasing model sizes and more complex
problems, training of Neural network models has become a
significantly resource intensive task taking up to hundreds of
hours. In this paper, we propose a new efficient method to train
dense ReLU-based neural networks. Our method estimates a
layer’s weight matrix using linear regression. We evaluate our
models on 3 regression tasks using the UCI Machine Learning
Repository’s Auto MPG Data Set and Concrete Compressive
Strength Data Set [1] and a synthetic dataset generated with
y = sin(x) + 1 function. We compare our results to traditional
gradient-based optimization methods. In both shallow (2-layers)
and wide (10 hidden neurons) networks, this method significantly
outperforms traditional gradient descent methods like AdaGrad
in terms of speed, generalization, and accuracy.

Index Terms—Machine Learning, Deep Neural Networks,
Training and Optimization, ReLU, Artificial Intelligence

I. INTRODUCTION

With the availability of large datasets, the application of ma-
chine learning has greatly increased in last decade. However,
with the added size and complexity of the data a traditional
machine learning may not be able to learn the complex patterns
in the data. As a solution to this problem, deep learning models
have gained attention in recent years. Different deep learning
models has been proposed. While these complex models
demonstrate great performance for complex problems, training
these models has become a significantly resource intensive
task taking up to hundreds of hours and huge amounts of
compute. As an example, GPT-3 [2], a general-purpose NLP
(natural language processing) model designed by OpenAI took
3.14E23 flops of computing power and multiple weeks to be
trained. Solving this issue has always been a core aspect of the
machine learning community, with hardware accelerators that
make training faster and more efficient to better optimizers
like AdaGrad which practically ensure convergence and speed
up training times enormously.

In deep neural networks, an activation function plays an im-
portant role transforming the output of a neuron to learn more
complex patterns. There are several activation functions such
as a linear activation function which applies no transformation,
the sigmoid activation function, which applies the sigmoid
function to every component of the vector, and the hyperbolic
tangent function, which applies the hyperbolic tangent func-
tion to every component of the vector. The Rectified Linear

Unit (ReLU) [3], [4] is the most successful and widely-used
activation function because of its simplicity and effectiveness.
There are also many imrpoved ReLU functions such as Elu
[5], leaky ReLu [6].

A regular neural networks model include layers of neuron
and learn weights of layers that map inputs of the layer
to output. It learns the parameters with minimizing loss
function. Some popular neural network training methods are
AdaGrad [7], SGD [8], and Adam [9]. They have been
proven to work well on many different tasks. All of them
are gradient-descent-based methods, which require significant
computational resources. As a solution to this problem, in this
paper, we propose a new neural network training model that
approximates the weight of a layer by assuming successive
layers have no ReLU activation. The proposed method differs
from gradient descent methods because it is not iterative, nor
does it use gradients to inform it on how to improve the
next prediction. Our goal is train neural network model more
efficiently without losing effectiveness.

We further demonstrate detailed experiments on 3 differ-
ent data sets. One of them are generated with the function
y = sin(x) + 1 and other two are real world datasets. Our
results show that the proposed method show better efficiency
and effectiveness than the current baseline activation functions.

II. PRELIMINARIES

A. ReLU Based Dense Neural Networks

A regular neural network include layers of neurons and
learns weights of layers to map inputs to outputs.

For each layer, the inputs are multiplied by the weights in
a neuron, summed together and then transformed via an acti-
vation function σ to obtain the specific output or “activation”
of the node. Output of a layer is defined as

ln(
−→x ) = σ((Wn)

T−→x +
−→
Bn)

where −→x is the input vector and Wn is the weight matrix of
the layer and

−→
Bn is the bias vector.

In ReLU based neural networks, σ is the ReLU function.
The ReLU function performs the operation max(0, x) on
every component of the vector, essentially zeroing out the



negative components of the vector. The layer functions are
then composed to form a neural network:

f(−→x ) = (ln ◦ ln−1 · · · l2 ◦ l1)(−→x )

The number of compositions of the layer functions determines
the layer count, and the number of components of the resulting
vector from each layer is known as its neuron count.

B. Neural Network Training

The goal of neural network training is to learn the parame-
ters W1,W2 · · ·Wn and

−→
B 1,
−→
B 2 · · ·

−→
Bn by minimizing some

error function L(y, ŷ), commonly known as a loss function,
where y is the true value, and ŷ is the estimated value
calculated by ŷ = f(−→x ). In regression tasks, MSE (mean
squared error) is a commonly used loss function defined as:

LMSE(y, ŷ) =
1

n

n∑
i=1

(yi − ŷi)2

This is also the function usually minimized when fitting a
linear regression model, more specifically, the ordinary least
squares method. In traditional neural network training meth-
ods, we take the derivative of the loss function with respect to
the neural network parameters. Then we take some step based
on the derivatives, recalculate the loss, and repeat this process.
Adam, AdaGrad, and SGD are all gradient based methods
and differ based on how they update the weights using the
gradients.

III. RELATED WORKS

In machine learning, gradient-based-methods, like Adam,
AdaGrad and SGD, are almost exclusively used to train neural
networks. Most training methods require knowledge of the
underlying model such as gradient or the symbolic expression.
These methods are also known as local optimization methods.
In addition to the mentioned methods, non-gradient based
methods have been proposed such as PSO (particle swarm
optimization) [10], surrogate loss function optimization [11],
and simulated annealing [12]. These methods were developed
specifically for tasks where the underlying model is not known
and has multiple local optima. The proposed method is similar
to the gradient based methods, where the underlying model is
known, however, the gradient is not calculated. This allows
us to exploit the model structure to efficiently estimate the
model parameters, giving us both the benefits of speed of
the non-gradient-based methods and improved accuracy of the
gradient-based-methods.

IV. METHODOLOGY

In this section, we explain our proposed method Linstorch.
We develop a novel method to train a neural network model
with the ReLU activation function by linear assumption.

The core idea of the proposed method is to approximate
the weight of the i-th layer by assuming successive layers
have no ReLU activation. This means that they considered as
linear. By using a generalized form of matrix inverses (the
Moore–Penrose inverse [13]) and the linearity assumption, we

Algorithm 1 SolveLayer: Learning One layer’s parameter

1: procedure SOLVELAYER(l, i,−→x ,
−→
Y )

2: forward← ForwardTo(l, i,−→x )
3: backward← BackwardTo(l, i,

−→
Y )

4: if li has bias then
5: paddedForward← AppendOne(forward)

6: inverse← pinv(paddedForward)
7: solutionMatrix← (inverse× backward)T
. Now extract the bias and weight matrix and update the
weight and bias of the layer.

8:
−→
Bi ← lastColumnVector(solutionMatrix)

. Since we padded forward with ones on the right most
column, the bias vector corresponds with the rightmost
column vector in solutionMatrix.

9: Wi ← exceptLastColumnVector(solutionMatrix)
. The matrix without the rightmost column vector is the
correct weight matrix.

10: else
11: inverse← pinv(forward)
12: solutionMatrix← (inverse× backward)T
13: Wi ← solutionMatrix . Update the layer’s

weight matrix.
14: end if
15: end procedure

can calculate the expected input to the (i + 1)-th layer, e.g.
the output of the current layer called as backward. We can
also forward-propagate the neural network up until the (i−1)-
th layer, which is called as forward. Since we assume that
the current layer, li(−→x ), is linear layer which is the form of
Wi
−→x +

−→
Bi, solving the layer becomes a multivariate linear

regression problem where we estimate
−→
Bi, the bias vector,

and Wi, which is the coefficient matrix, i.e.

backward =Wi × forward+
−→
Bi

The proposed method differs from gradient descent methods
because it is not iterative, nor does it use gradients to inform
it on how to improve the next prediction.

The proposed training method, named Linstorch, is detailed
in Algorithm 1 that estimates the weight matrix and bias vector
for a single layer. First, we propagate input to the current layer
i with a ForwardTo procedure, and propagates the output to
the current layer with BackwardTo procedure.

Remaning steps are depends on whether there is a bias or
not. Without bias a layer can be defined as

li(
−→x ) = ReLU(Wi

−→x )

This procedure calculates the forward and backward
as described in the beginning of the section. If the layer
has a bias term, we apply the AppendOne procedure to
the forward matrix. With AppendOne(A), we expand the



Algorithm 2 Evaluate all layers up to li
1: procedure FORWARDTO(l, i,−→x )
2: if i equals 0 then
3: return −→x . The input of the first layer should be
−→x

4: end if
5:

−→
out← −→x

6: for j ← 1 to i− 1 do
7:

−→
out← lj(

−→
out)

8: end for
9: return −→out

10: end procedure

forward matrix by adding a column vector of ones to the
right of the last column and returns the new matrix e.g.:

AppendOne



a1 b1
a2 b2
...

...
an bn


→


a1 b1 1
a2 b2 1
...

...
...

an bn 1


The resulting matrix is called paddedForward. When adding
a constant feature of 1, the multipliers of the constant feature
become bias terms. This is a common technique when fitting
linear regression models. To estimate the layer parameters, we
need to solve the equation:

backward =Wi × forward+
−→
Bi

, which can be expressed using paddedForward as following:

backward = Si × paddedForward

Finally, Moore–Penrose inverse is used to solve the matrix
equation:

Si = pinv(paddedForward)× backwards

We take the rightmost column vector of the solution matrix
Si to get

−→
Bi. We do that because we appended the constant

1 feature to the rightmost column of our data, meaning
everything in the rightmost column of Si are constant multiples
of 1 representing the bias term

−→
Bi. The matrix Wi is equal to

the solution matrix Si excluding the rightmost constant column
vector.

The ForwardTo procedure evaluates the neural network up
to the before li as regular with ReLU activation function,
which is detailed in Algorithm 2.

The BackwardTo procedure assumes that all layers after li
are linear and iterates backward calculating the product of all
the linear matrices. Then, using the Moore–Penrose inverse, it
calculates a possible input to the linear approximation of the
layers which is the expected output of li, so that the successive
linear approximations result in

−→
Y and returns the expected

output:
The procedure Mat generates a matrix representation of li

in the following form:

Algorithm 3 Evaluate all layers up to li
1: procedure BACKWARDTO(l, i,−→y )
2: if i equals N then
3: return −→y . The output of the last layer should

be −→y
4: end if
5: wProduct← I .

Initialize the weight product with an identity matrix with
the size being the number of output features

6: for j ← N to i+1 do . Note: this iterates backward
7: layerMatrix← Mat(lj)
8: wProduct← wProduct× layerMatrix
9: end for

10: inverseMatrix← pinv(wProduct)
11: expectedOutput← (−→y × inverseMatrix)T

12: return expectedOutput
13: end procedure

Mat(li)→


M11 M12 . . . M1n

−→
C 1

M21 M22 . . . M2n
−→
C 2

...
...

...
...

...
Mm1 Mm2 . . . Mmn

−→
Cm

0 0 . . . 0 1



Where for convenience the following variables are used:

M =Wi

C = Bi

M has a size of m× n and
−→
C has a size of m.

The bottommost row vector is added to the matrix in
order to pass along the column vector of ones, added by the
AppendOne procedure, necessary for the subsequent layers
to implement the bias vector

−→
C . This matrix form allows us

to pass along the constant one column vector appended by the
AppendOne procedure.
Note: If the layer has no bias

−→
C is set to the zero vector with

the size of m.
Finally, Lintorch algorithm that trains a neural network

model with the ReLU activation function by linear assumption
is detailed in Algorithm 4. It runs for multiple layers and trains
neural network with data. First it iterates from layer N to 1 to
learn the parameters of all layers with SolveLayer 1. Then it
iterates from layer 1 to N to update the weights of the layers.

V. RESULTS

In this section we report our experimental results on 3
different data sets. The first data set is the Auto MPG Data
Set from the UCI Machine Learning Repository and is derived
from real world data. The second data set is generated with
the function y = sin(x)+1. We compare the newly proposed
method and state-of-the-art training methods. The third data



Algorithm 4 Fit the neural network to the data

1: procedure SOLVE(l,−→x ,
−→
Y )

2: for j ← N to 1 do . Iterating backward through
each layer of the neural network

3: SolveLayer(l, i,−→x ,
−→
Y )

4: end for
5: for j ← 1 to N do . Iterating forwards through each

layer of the neural network
6: SolveLayer(l, i,−→x ,

−→
Y )

7: end for
8: end procedure

Fig. 1. 1000 randomly initialized neural networks fitted to the function
sin(x) + 1 by the Linstorch algorithm.

set is the Concrete Compressive Strength Data Set from the
UCI Machine Learning Repository and is derived from real
world data.

Figure 1 shows the neural network outputs of the 1000
trained neural networks fitted to the y = sin(x)+1 data using
the Linstorch algorithm. As one can see from this Figure, even
though we use a linear regression-based training method, the
resulting function is not strictly linear and approximates the
shape of the data well. Figure 2 shows a histogram of the
errors of 1000 Linstorch trained neural networks. The dotted
line represents the error of a ordinary least squares based linear
regression and the solid line represents the average error of the
Linstorch training method. As we see, the proposed method
easily outperforms linear regression and is always better than
linear regression. Figure 3 shows the error of a random neural
network approximation of the function y = sin(x) + 1 with-
out any training. The random neural network approximation
performs significantly worse than simple linear regression and
Linstorch. All of the tested neural networks had 2-layers and
10 neurons in the intermediate layer.

In Figures 4 and 5, we show the MSE as a function of exe-
cution time, which allows us to compare errors and efficiency
for epoch and non-epoch-based methods. We compare our

Fig. 2. Histogram MSE (mean squared error) of 1000 randomly initialized
neural networks fitted to the function sin(x)+1 by the Linstorch algorithm.

Fig. 3. Histogram MSE (mean squared error) of 1000 randomly initialized
neural networks with the function sin(x) + 1.

results with the following training methods: SGD (stochastic
gradient descent), Adam, AdaGrad (adaptive gradient algo-
rithm), random neural network sampling, and Linstorch. For
every training method, default hyper-parameters are used. For
both the Random neural network sampling (RANDOM) and
Linstorch methods, we do training by regenerating neural
networks until a target error is achieved. For other methods,
an iterative method is used. The tested neural networks had 2-
layers. For both datasets, we used a 1/3 test train split, where
1/3 of the data was used for testing and the other 2/3 was used
for training.

Figure 4 shows results for the function y = sin(x)+1. The
proposed method reaches the lowest error in the least amount
of elapsed time. Notably, Linstorch always outperforms ran-
dom neural network sampling, meaning Linstorch actually fits
the neural network to the data.



Fig. 4. Performance of different neural network training algorithms when
fitting a 2-layer deep neural network to the function sin(x) + 1.

Fig. 5. Performance of different neural network training algorithms when
fitting UCI Machine Learning Repository’s Auto MPG Data Set.

Figure 5 shows the results for the UCI Machine Learning
Repository’s Auto MPG Data Set. We used mpg, acceleration,
and displacement as features and predicted horsepower. Again,
Linstorch reaches the lowest error in the least amount of
elapsed time. Linstorch still outperforms linear regression, but
not by much. Linstorch also still outperforms the random
neural network sampling.

Figure 6 shows the results for the UCI Machine Learning
Repository’s Concrete Compressive Strength Data Set. We
used concrete age and the quantities of the ingredients. These
ingredients include cement, blast furnace slag, fly ash, water,
superplasticizer, coarse aggregate, and fine aggregate. Again,
Linstorch reaches the lowest error in the least amount of
elapsed time. Linstorch still outperforms linear regression
and significantly outperforms the gradient-based methods.
Linstorch also still outperforms the random neural network
sampling.

Table I, shows errors which is obtained by running the
Solve procedure either iterating backward or forwards first.
As one can see from table I, the lowest error is achieved by

TABLE I
COMPARISON OF ERRORS FOR DIFFERENT SOLVE PROCEDURES.

MSE of different layer solve orders and iteration count
Solve Calls Backward First Forward First
0 5331.501 5257.762
1 0.084 0.488
2 0.173 0.485

Fig. 6. Performance of different neural network training algorithms when
fitting UCI Machine Learning Repository’s Concrete Compressive Strength
Data Set.

calling the Solve procedure once, and iterating through the
layers backward first.

We change the number of layers to see the effect of it
on the results. We see that increasing the layer number,
decrease the mse bur increase the training time. In Figure
7, we give the results for 3-layer deep neural networks on
y = sin(x) + 1 function. Notably, as more layers are added
our training method decrease the efficiency of our method
but increase the effectiveness with less error. In this case, our
method still achieves the lowest error in the least amount of
time.

Fig. 7. Performance of different neural network training algorithms when
fitting a 3-layer deep neural network to the function sin(x) + 1.



Fig. 8. Degenerate case where the slope of the regression line is zero and
Linstorch does not outperform linear regression.

VI. LIMITATIONS OF THE METHOD

Studying this method we found that one particular case that
represents a challenge for our method. When the best linear
regression model has slopes of zero, the method cannot do
better than the linear regression model. An example of this
case is shown in Figure 8. The method also struggles with deep
neural networks. This is related to the intrinsic assumptions
that the Linstorch training method makes. Since it assumes
successive layers are linear, the more layers there are, the
worse that approximation is, which causes Linstorch to not
get a low final error, even with re-sampling.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we introduced Linstorch, a novel non-gradient-
based training method for ReLU activation dense neural net-
works. We compared the proposed method to widely used
neural network training methods (Adam, SGD, AdaGrad) on
three regression tasks: fitting the function y = sin(x) + 1,
fitting the UCI Machine Learning Repository’s Auto MPG
Data Set, and fitting the UCI Machine Learning Repository’s
Concrete Compressive Strength Data Set. Our results show
that Linstorch outperforms all methods in terms of elapsed
time and MSE.

Unlike most training algorithms, Linstorch is not iterative,
meaning it is trivial to parallelize. In the time it takes to run
one iteration of the algorithm one could run the algorithm in
parallel and obtain multiple samples granting a speedup factor
proportional to however many cores are available. Another
improvement to the method is using it in conjunction with
gradient-based methods. Since Linstorch is incredibly fast to
run and performs as well as linear regression or better, it could
be a replacement for weight initialization in neural networks.

This method can be used in big data applications since
it achieves low error quickly. It can play a part in edge

computing, where low computing power devices need to train
neural networks. This method can also be used in a hybrid
approach, quickly creating a good initial model and using
traditional gradient-based methods to finish optimizing the
model. Developing a mathematically rigorous understanding of
the proposed method could allow the limitations to be solved
and further efficiency gains in training. Another possible future
work is developing a parallel sampling method and evaluating
the effectiveness of using Linstorch as weight initialization
method. All the code and data are available at:
https://github.com/maximkha/linfit.
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